Your First MLP

Recitation 1, part 1 Fall 2022

Overview

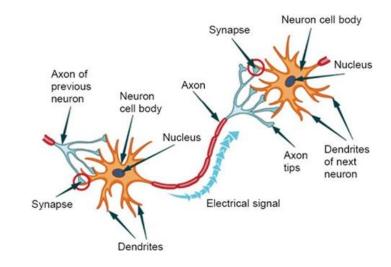
- Neural Networks
- Perceptrons
- Multilayer perceptrons
 - Forward Pass
 - Backpropagation
 - Update Weights

Neural Networks

- The brain, made up of connected neurons, are the inspirations for artificial neural networks.

Neural Networks

- A neuron is a node with many inputs and one output.
- A neural network consists of many interconnected neurons -- a "simple" device that receives data at the input and provides a response.
- Information are transmitted from one neuron to another by electrical impulses and chemical signals.

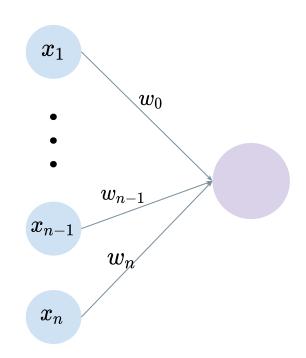


- Perceptron is a single layer neural network.

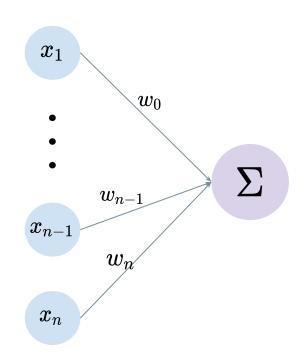
- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.

- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
 - Input values

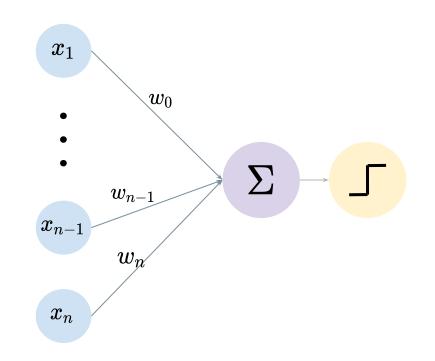
- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
 - Input values
 - Weights



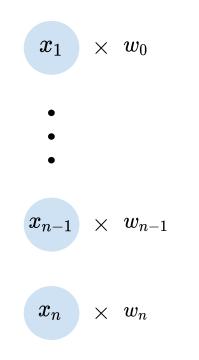
- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
 - Input values
 - Weights
 - Weighted sums



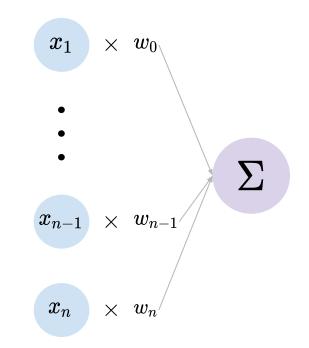
- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
 - Input values
 - Weights
 - Weighted sums
 - Threshold / Activation functions



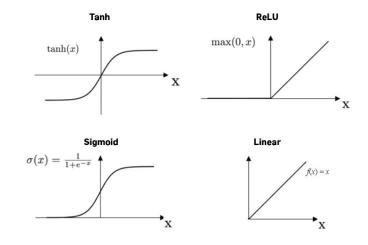
- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
- The perceptron works on the following steps:
 - Multiply all inputs with their weights



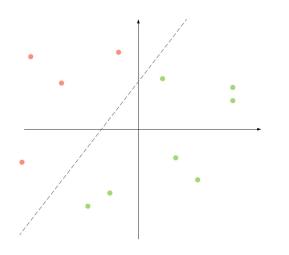
- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
- The perceptron works on the following steps:
 - Multiply all inputs with their weights
 - Add all multiplies values → weighted sum

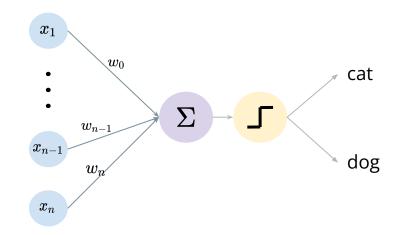


- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
- The perceptron works on the following steps:
 - Multiply all inputs with their weights
 - Add all multiplies values → weighted sum
 - Apply the weighted sum to activation function

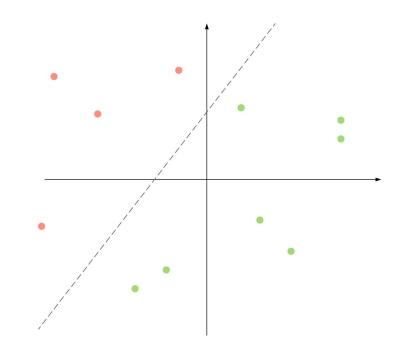


 Perceptron is usually used to classify the data into two parts - Linear Binary Classifier.





- Perceptron is usually used to classify the data into two parts - Linear Binary Classifier.
 - Weights shows the strength of the particular node.
 - Activation functions are used to map the input between the required values



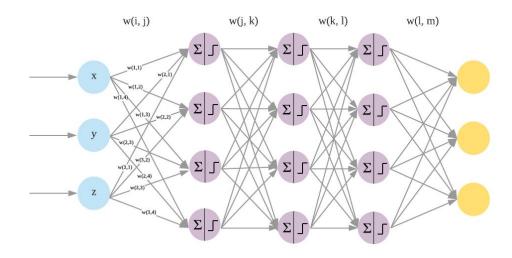
Multilayer Perceptrons

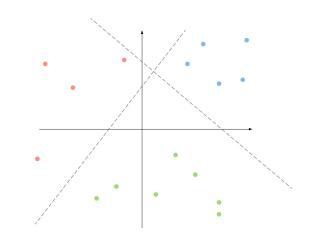
What if we want to be able to distinguish between more classes?

Multilayer Perceptrons

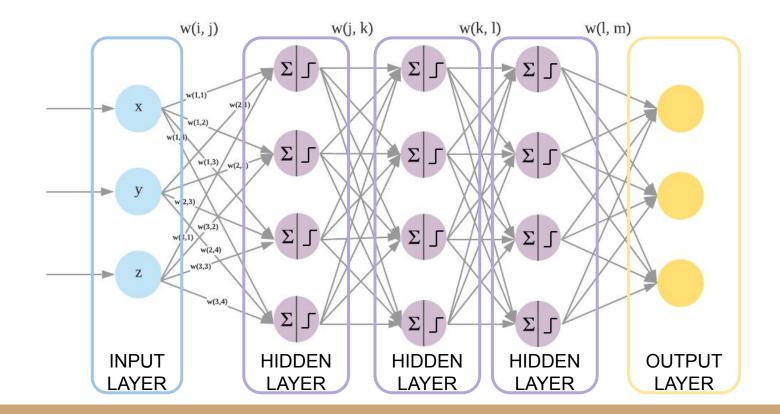
What if we want to be able to distinguish between more classes?

- Introduce more perceptrons !





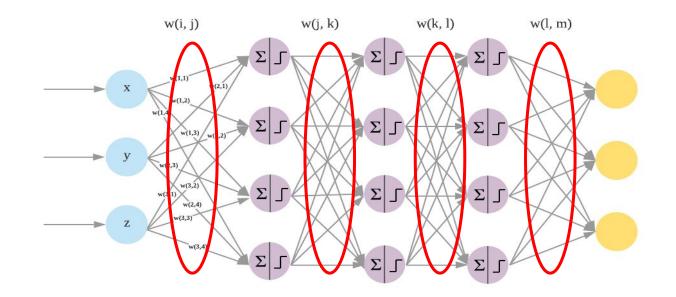
Multilayer Perceptrons



In order to correctly classify things, the network must be **learned**.

But first, **what** do we need to learn?

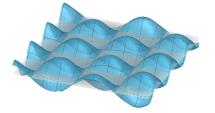
The parameters (or the weights)



How do we learn?

- → Actual Function that we are trying to model:
 - Note: We don't know the actual function.

→ We only have several sample data points on this function.

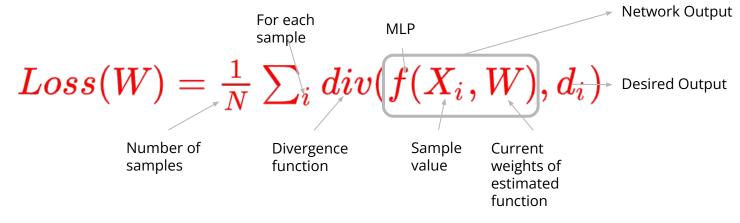




- \rightarrow Our goal:
 - Estimate the function with the given samples.

How do we learn?

- → A measurement of error
 - How much off is the **network output** with respect to the **desired output**

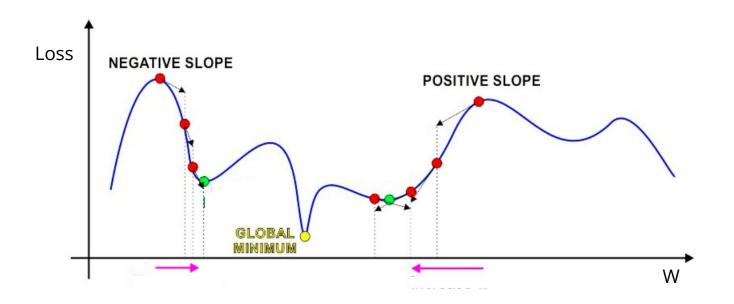


- → Our goal (more specifically):
 - Minimize the loss

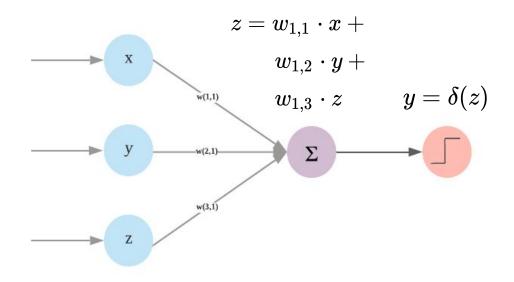
$$\hat{W} = \operatorname*{arg\,min}_{W} \ Loss(W)$$

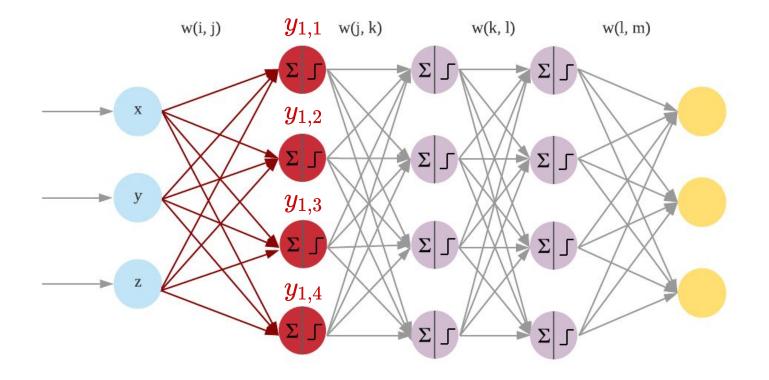
How do we learn?

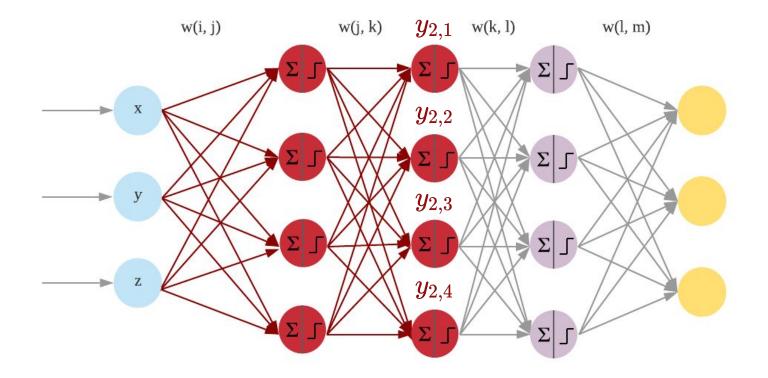
→ Gradient Descent

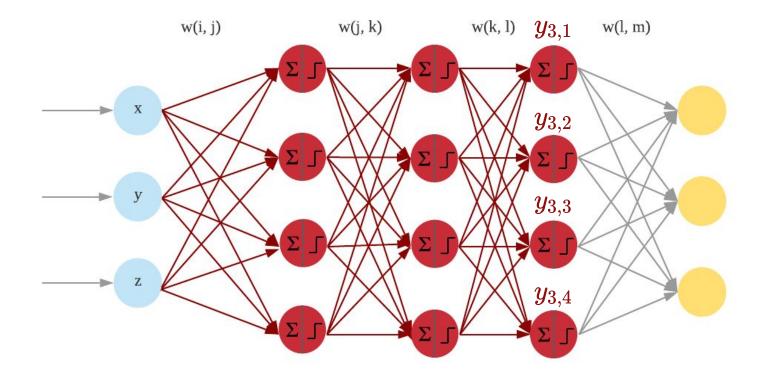


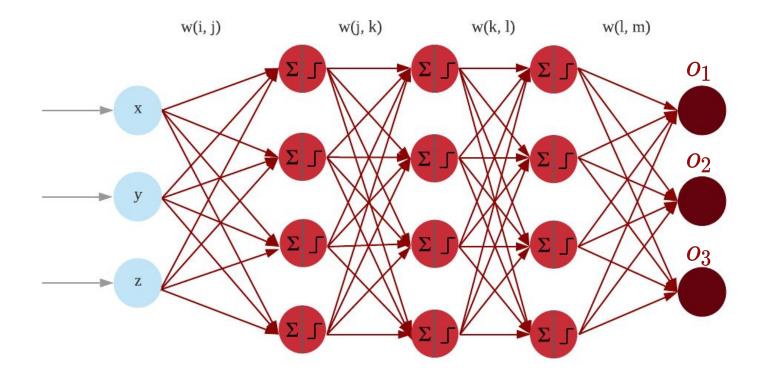
- For each single perceptron

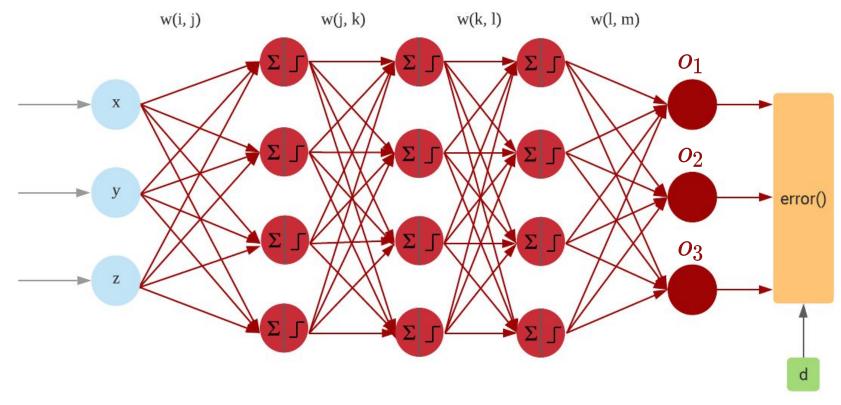


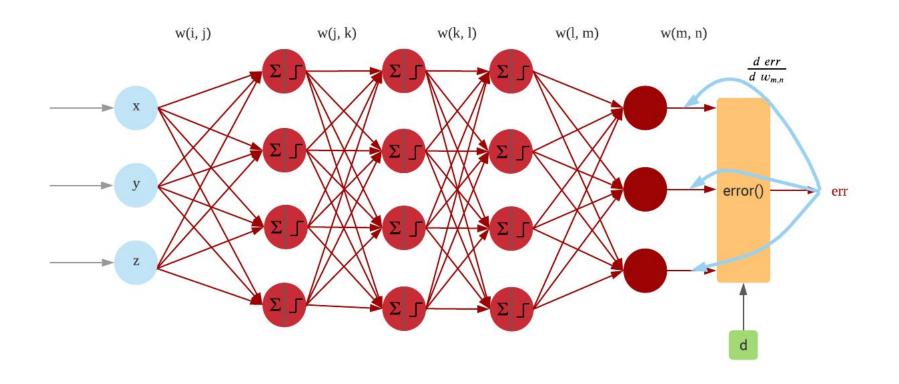


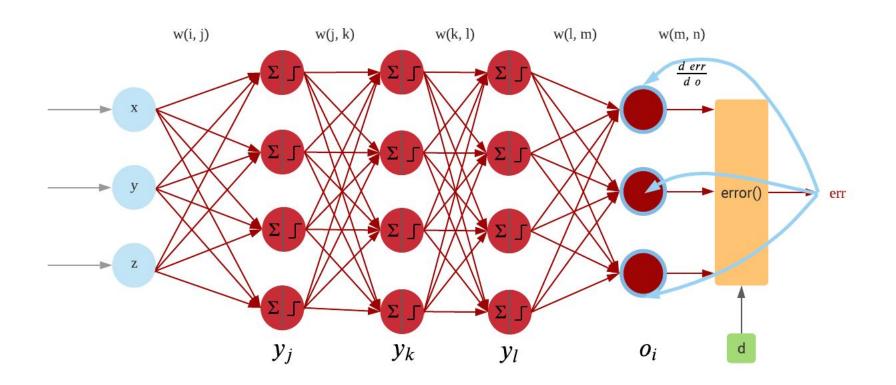


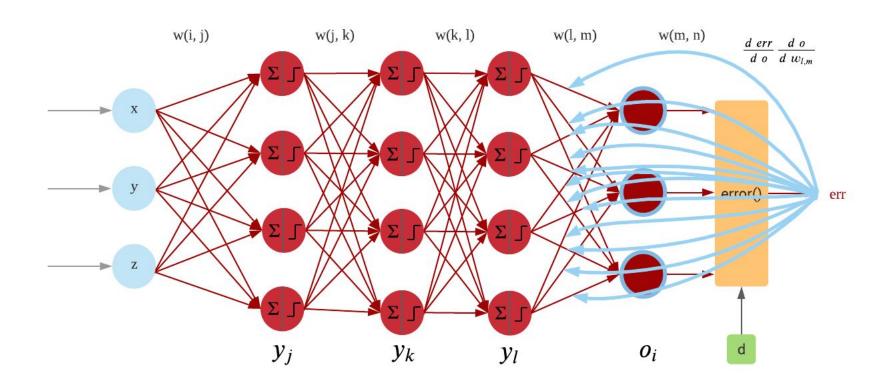


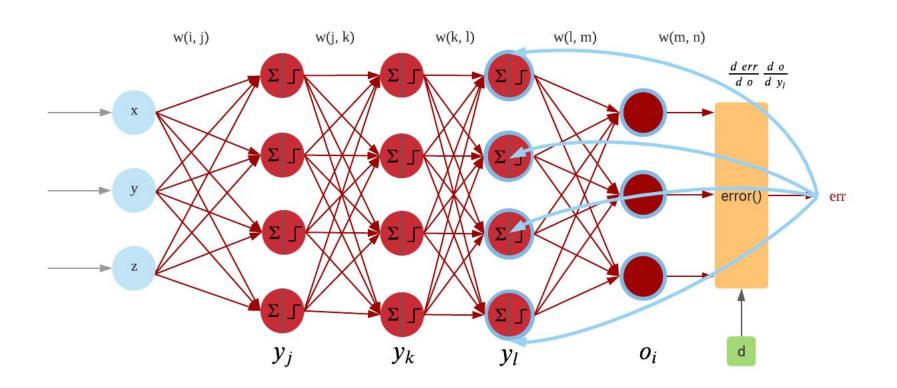


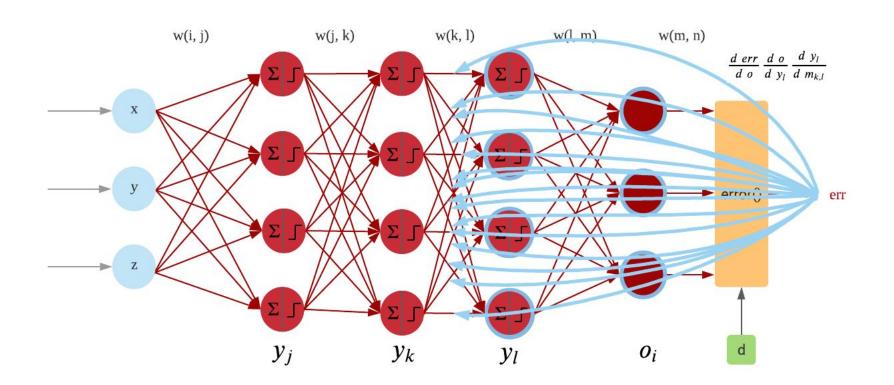


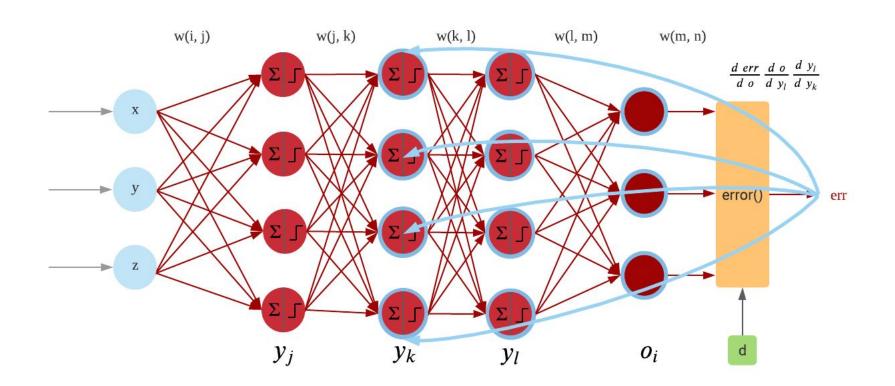












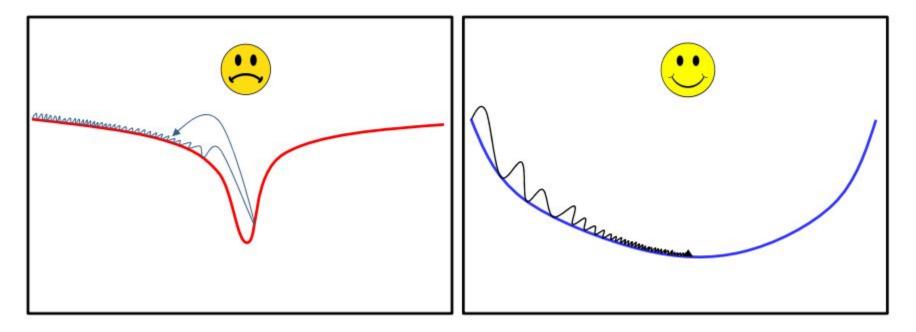
....

All gradients of weights w.r.t error are calculated!

Update Weights

$$W \leftarrow W - \eta \cdot \nabla_W Loss(W)$$

What should be the learning rate?



https://deeplearning.cs.cmu.edu/F21/document/slides/lec8.optimizersandregularizers.pdf

Optimizers

Gradient Descent:

 $\theta_{t+1} = \theta_t - \alpha \cdot \nabla_{\theta} J\left(\theta\right)$

Momentum (http://proceedings.mlr.press/v28/sutskever13.pdf):

 $egin{aligned} m_{t+1} &= \mu \cdot m_t + lpha \cdot
abla_ heta J\left(heta
ight) \ heta_{t+1} &= heta_t - m_{t+1} \end{aligned}$

Adagrad (https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf):

$$egin{aligned} g \leftarrow
abla_{ heta} J\left(heta
ight) \ r \leftarrow r+g^2 \ riangle heta \leftarrow rac{\delta}{\sqrt{r+\epsilon}} \cdot g \ heta \leftarrow heta - riangle heta \end{aligned}$$

Optimizers (Cont')

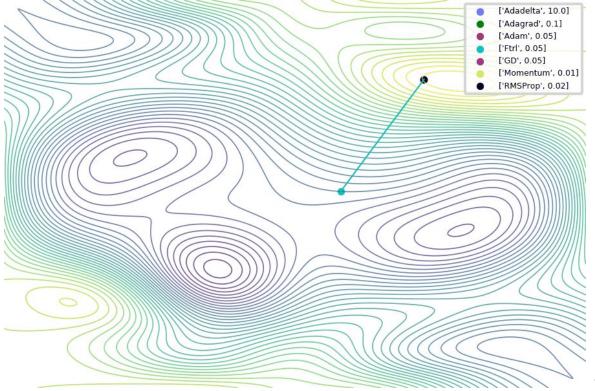
Adam (https://arxiv.org/pdf/1412.6980.pdf):

$$m_{t} = \beta_{1} \cdot m_{t-1} + (1 - \beta_{1}) \cdot g_{t}$$
$$v_{t} = \beta_{2} \cdot v_{t-1} + (1 - \beta_{2}) \cdot g_{t}^{2}$$

$$\hat{m}_t = m_t / (1 - \beta_1^t)$$
$$\hat{v}_t = v_t / (1 - \beta_2^t)$$

$$\theta_t = \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t + \epsilon})$$

Visualization



https://github.com/Jaewan-Yun /optimizer-visualization

Some fun with TF Playground

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

