
Your First MLP

Recitation 1, part 1
Fall 2022

Overview
- Neural Networks
- Perceptrons
- Multilayer perceptrons

- Forward Pass
- Backpropagation
- Update Weights

Neural Networks
- The brain, made up of connected

neurons, are the inspirations for
artificial neural networks.

Neural Networks
- A neuron is a node with many

inputs and one output.
- A neural network consists of

many interconnected neurons -- a
“simple” device that receives data
at the input and provides a
response.

- Information are transmitted from
one neuron to another by
electrical impulses and chemical
signals.

Perceptrons
- Perceptron is a single layer neural

network.

Perceptrons
- Perceptron is a single layer neural

network.
- The perceptron consists of 4

parts.

Perceptrons
- Perceptron is a single layer neural

network.
- The perceptron consists of 4

parts.
- Input values

Perceptrons
- Perceptron is a single layer neural

network.
- The perceptron consists of 4

parts.
- Input values
- Weights

Perceptrons
- Perceptron is a single layer neural

network.
- The perceptron consists of 4

parts.
- Input values
- Weights
- Weighted sums

Perceptrons
- Perceptron is a single layer neural

network.
- The perceptron consists of 4

parts.
- Input values
- Weights
- Weighted sums
- Threshold / Activation functions

Perceptrons
- Perceptron is a single layer neural

network.
- The perceptron consists of 4

parts.
- The perceptron works on the

following steps:
- Multiply all inputs with their weights

Perceptrons
- Perceptron is a single layer neural

network.
- The perceptron consists of 4

parts.
- The perceptron works on the

following steps:
- Multiply all inputs with their weights
- Add all multiplies values → weighted

sum

Perceptrons
- Perceptron is a single layer neural

network.
- The perceptron consists of 4

parts.
- The perceptron works on the

following steps:
- Multiply all inputs with their weights
- Add all multiplies values → weighted

sum
- Apply the weighted sum to activation

function

Perceptrons
- Perceptron is usually used to

classify the data into two parts --
Linear Binary Classifier.

cat

dog

Perceptrons
- Perceptron is usually used to

classify the data into two parts --
Linear Binary Classifier.

- Weights shows the strength of the
particular node.

- Activation functions are used to
map the input between the required
values

Multilayer Perceptrons
What if we want to be able to distinguish between more classes?

Multilayer Perceptrons
What if we want to be able to distinguish between more classes?

- Introduce more perceptrons !

Multilayer Perceptrons

INPUT
LAYER

HIDDEN
LAYER

HIDDEN
LAYER

HIDDEN
LAYER

OUTPUT
LAYER

In order to correctly classify things, the network
must be learned.

But first, what do we need to learn?
The parameters (or the weights)

How do we learn?
➔ Actual Function that we are trying to model:

◆ Note: We don’t know the actual function.

➔ We only have several sample data points on

this function.

➔ Our goal:

◆ Estimate the function with the given samples.

How do we learn?
➔ A measurement of error

◆ How much off is the network output with respect to the desired output

Number of
samples

For each
sample MLP

Sample
value

Current
weights of
estimated
function

Divergence
function

Network Output

Desired Output

➔ Our goal (more specifically):
◆ Minimize the loss

How do we learn?
➔ Gradient Descent

Loss

W

Forward Pass
- For each single perceptron

Forward Pass

Forward Pass

Forward Pass

Forward Pass

Error

Backpropagation

Backpropagation

Backpropagation

Backpropagation

Backpropagation

Backpropagation

Backpropagation

…...

Backpropagation

All gradients of weights w.r.t error are calculated!

Update Weights

What should be the learning rate?

https://deeplearning.cs.cmu.edu/F21/document/slides/lec8.optimizersandregularizers.pdf

Optimizers
Gradient Descent:

Momentum (http://proceedings.mlr.press/v28/sutskever13.pdf):

Adagrad (https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf):

Optimizers (Cont’)
Adam (https://arxiv.org/pdf/1412.6980.pdf):

Visualization

https://github.com/Jaewan-Yun
/optimizer-visualization

Some fun with TF Playground

